Chapter 4. Completeness and real numbers
We would like to substantiate the determination of the mathematical models. The general cause of the difficulties here is the passage to the limit in the balance relations of the elementary volume as this volume shrinks to a point. This operation requires properties of the considered functions, just as we do not obtain the equation with respect to these functions yet. The effective method of the substantiation of the convergence is necessary for this procedure. We know that the standard definitions of the limit are non-constructive, because the knowledge of the limit is necessary here. However, we do not know often the fact of the convergence even. 

The existence of the limit of the numerical sequences can be determine by the Cauchy criterion. This method can reduce the convergence of the sequences from its fundamentality. Note that the definition of the fundamental sequence uses the elements of this sequence only. This technique is applicable for some functional spaces too, for example, for the space of continuous functions with standard norm. This circumstance gives us some hope, since in the process of determination of the mathematical physics equations, it is necessary to work with functions, not numbers.
Unfortunately, the Cauchy criterion is not applicable for many metric spaces, particularly, for the sets of rational numbers, positive numbers, continuous functions with integral norm, and Riemann integrable functions. We cannot guaranty the convergence of fundamental sequences there. The Cauchy criterion is applicable for the complete spaces only. Moreover, the majority of the mathematical spaces are non-complete. Therefore, we have the necessity to have the effective method of passage to the limit for the non-complete spaces too.

Note that for all examples of the divergent fundamental sequences there exist points that can be interpreted as generalized limits of these sequences. These points are not the elements of the given spaces. However, it will be the points of its extensions. Thus, the non-complete spaces can be extended to complete spaces. This idea is realized for the Cantor’s definition of the set of real numbers. 
4.1. Inapplicability of the Cauchy criterion 
The Cauchy criterion is the very effective method of proving the convergence of the sequences. This is applicable not only for numerical sequences, but for classes of functional sequences too. However, it is not obviously its applicability for all metric spaces. Determine the relation between the convergent and fundamental sequences.

By triangle inequality, we have
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If the sequence {xk} has a limit x, then the terms at the right-hand side of this inequality tends to zero. Therefore, this sequence is fundamental. However, the inverse assertion is not obviously. 
Consider some examples. 
Example 4.1. Space of rational numbers. Consider the set of all rational numbers 
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. This is the metric space with natural metric (and the norm too) that is the subspace of the space of real numbers. Determine the following sequence 

x1 = 3,  x2 = 3.1,  x3 = 3.14,  x4 = 3.141,  x5 = 3.1415,… .     

This is the fundamental sequence because of the estimate
| xm+p – xm | ( 101-m  (m, p > 0.
If the Cauchy criterion is applicable on the space 
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, then there exists a rational number x that is the limit of the sequence {xk}. However, this limit does not exist, because this sequence determines the irrational number (. This is not a point of the initial space 
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. We have the sequence {xk} on the space of rational numbers without a rational limit. Therefore, this sequence is divergent; and the Cauchy criterion is not applicable on the metric space of rational numbers. (
Remark 4.1. It may appear that the sequence {xk} is convergent with number ( as the limit. However, we cannot to talk about the convergence or the fundamentality of the sequence without indication the metric space, where we consider this property. Indeed, for all sequence there exists a topological space such that this sequence is convergent there. If we would like to use the Cauchy criterion, then we need to consider the convergence and the fundamentality for the same space.  
Example 4.2. Space of positive numbers. Consider now the space of positive real numbers 
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 with the same metric. This is another subspace of the space of real numbers. Determine the sequence {xk} by the equality xk = 1/k, k = 1, 2,… . This is the fundamental sequence on the space 
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 because of the equality
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However, we do not have any positive number that is the limit of this sequence. Therefore, we have the divergence of the fundamental sequence on the metric space of positive numbers. (
Example 4.3. Space of continuous functions with integral metric. Determine now the space C[–1,1] of the continuous functions on the interval [–1,1] with integral metric
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Consider the sequence of the functions 
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There are the continuous functions on the interval [–1,1] (see Figure 4.1). It is obviously that the sequence {xk} is fundamental here. However, this sequence does not have any continuous function as a limit. Thus, the Cauchy criterion is not applicable for the metric space of continuous functions with integral metric too. (
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Figure 4.1. The fundamental sequence diverges 
on the space of the continuous functions with integral metric. 
Example 4.4. Space of Riemann integrable functions. Consider the set of Riemann integrable functions on the interval [0,1]. This is the linear normalized space with metric
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The set of all rational numbers on the interval [0,1] is denumerable. Therefore, it can be interpreted as a sequence {qk}. Determine the following sequence of the functions {хk}. Let х1 be the function equal to 1 at the point q1 with zero values for all other points. If the function хk-1 is known, we determine the next function хk such that it equals to 1 at the point qk and хk-1 for all other points. The function хk is integrable in the sense of Riemann (see Figure 4.2) because it is equal to zero everywhere with the exception of the finite set of points. The value ((xm,xn) equal to zero because we have the distinction between these functions on the finite set only. Therefore, the sequence {хk} is fundamental on the metric space of Riemann integrable functions. We could interpreted the Dirichlet function D as the limit of this sequence. It has the value 1 for all rational arguments and the value 0 for all irrational numbers. 
Try to calculate its Riemann integral. Divide its domain by parts. Then we choose a rational point from each part. The Riemann integral sum is the sum of the areas of rectangles, where the sides are the value of D at the chosen point that is 1 and the length of the considered part of the fragmentation (see Figure 4.3). Of course, the integral sum is equal to 1. Pass here to the limit as the maximal length of these intervals tends to zero; we obtain the value 1 as the limit. However, for any part of the fragmentation we can choose an irrational point with zero value of the Dirichlet function. Therefore, the integral sum is equal to zero too (see Figure 4.3). Its limit as the maximal length of these intervals tends to zero is zero too. Thus, the limit of the integral sum depends from the choice of the point from the intervals of fragmentation. Hence, the Dirichlet function is not Riemann integrable. We determine that the fundamental sequence of the Riemann integrable functions does not have a Riemann integrable limit. Thus, the Cauchy criterion is not applicable here. (
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 Figure 4.2. The fundamental sequence of Riemann integrable functions. 
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Figure 4.3. The integral sum depends from the choice of the points.

Thus, there exist many metric spaces, where Cauchy criterion is not applicable. These results lead us to the notion of a complete metric space.
4.2. Complete metric spaces
We have, in reality, two classes of the metric spaces. There are the metric spaces with Cauchy criterion and the metric spaces without Cauchy criterion.
Definition 4.1. The metric space is called complete, if each fundamental sequence converges here. 
Hence, the Cauchy criterion is applicable for the complete spaces only. We have already known that the space of real numbers, Euclid space and the space of continuous functions with metric determined by the maximum of the absolute value are complete. However, the spaces of rational or positive numbers, continuous functions with integral metric and Riemann integrable functions are not complete. 

Now we can give the exact determination of the Banach fixed point theorem. 

Theorem 4.1. Let X be a complete metric space, and A be a contracting operator. Then the operator A has a unique fixed point that is the limit of the method of successive iterations for all initial approximation.   
The complete metric spaces have many applications. The most important classes of the complete metric spaces are Banach spaces and Hilbert spaces. The Banach space is the complete linear normalized space; and the Hilbert space is the complete unitary space (see Figure 4.4). 
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Figure 4.4. Hierarchy of topological spaces.

Remark 4.2. Cauchy criterion has the sense not only for the metric spaces, but also for its extension. There are the complete uniform spaces.

Unfortunately, there exist incomplete metric spaces. Besides, each positive property is the exception as a rule. Therefore, the majority of metric spaces (and uniform spaces too) are incomplete. Hence, we would like to have the effective method of passage to the limit for the general case, namely without the property of the completeness. 
4.3. Completion problem

We return to the consideration of the fundamental sequences without limits (see our previous examples). The divergent considered sequence of rational numbers does not have the rational limit. However, there exists an element ( that is not rational number. We can interpret it as a special weaker form of the limit for this sequence. The divergent fundamental sequence of positive numbers has a special element 0 that is not a positive number. However, we can interpret it as a special form of the limit for the sequence of positive numbers. The analogical property is true for the sequence of continuous functions from Figure 4.1. There exists the discontinuous function
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that can be interpreted as a limit of the sequence of continuous functions. Besides, the Dirichlet function can be interpreted as a special form of the limit for the considered sequence of Riemann integrable functions. 
The above thinks are not strict. However, we could assume that after the adjunction of the original incomplete metric space by artificially defined "limits" of divergent fundamental sequences, we provide in some sense the validity of the Cauchy convergence criterion. Thus, there is a hope that, as a result, we will get an effective way to substantiate the passage to the limit even in the absence of the completeness of the space. Of course, there may be natural fears of the legitimacy of such reasoning. Indeed, we do not have the “true” limit; and we ourselves are thinking up elements that do not really exist, which we then try to artificially interpreted as the limits of the divergent fundamental sequences. However, the numbers (  and zero mentioned above, the function x in Fig. 4.1 and the Dirichlet function are real mathematical objects, even if they do not belong to the corresponding incomplete metric spaces.
All mathematical concepts were actually introduced artificially at the time when a serious need arose in this. For example, let's remember how negative numbers were defined. I had some apples. I got three more apples that resulted in five apples. It is required to find out how many apples I had originally. Denoting by x the unknown number of apples, we obtain the equation 
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 Solving this equation, we find the value 
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 Now change the situation. I have apples. I got five more apples extra that resulted in three apples. We have the equation 
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 According to natural sense, the number of apples must necessarily be positive or, in extreme cases, zero. Therefore, we conclude that the equation under consideration has no solution. However, we supplement the set of natural (more precisely, non-negative integers) numbers by solutions of equation 
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 that is called the additive equation for all natural parameters a and b. Then our equation has the solution 
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 that can be interpreted as my duty to somebody. Of course, this is not belong to the given set of non-negative integer numbers. However, this is an element of an artificially constructed extension of this set. There is an obvious analogy between the method of determining real, in particular, irrational numbers and integers, in particular, negative numbers (see Table 4.1).
In both cases we have some procedure (the convergence of fundamental sequences, the resolution of the additive equation) may not be realizable on a given set (rational numbers, natural numbers). However, by extending this set, i.e. its replenishment with certain "invented" elements ("limits" of divergent sequences, "solutions" of insolvable equations), one can achieve the realization of this procedure (the convergence of any fundamental sequence of rational numbers, the solvability of any additive equation with nonnegative integer parameters).

Table 4.1. Analogy between definition of the integer and real number. 
	given set
	analyzed object
	difficulty
	desirable result
	extended set

	natural
numbers
	additive 
equation
	insolvability
of the equation
	Existence
of the solution
	integer
numbers

	rational
numbers
	fundamental
sequence
	divergence
of the sequence
	convergence
of the sequence
	real

numbers


Now we have the hope to obtain the convergence of the arbitrary fundamental sequence for all metric spaces. However, we do not know how we can extend the incomplete metric space for guarantying this result. Perhaps, we shell find the solution of this problem, using the constructive definition of the set of real numbers. 
4.4. Real numbers by Cantor
We would like to determine the set of real numbers with using the given set of rational numbers 
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. One know that the fundamental sequence of rational numbers can diverge. We would like to show that all real numbers can be interpreted as a special form of limits for the fundamental sequences of rational numbers.

Determine the very important notions of the sets theory.
Definition 4.2. The set ( of pairs of a set X is called the relation on X. 
Remark 4.3. More exact, this is called the binary relation. 

We can consider, for example, the relation of equality for the arbitrary set, the parallelism for the set of lines, the divisibility for the set of natural numbers, the seniority for the set of people, etc. We write x(y if the elements x and y of the set X belong to the relation (. Particularly, if ( is the parallelism on the set of lines, the property x(y is true whenever the line x is parallel to the line y. Determine the most important class of relations.
Definition 4.3. The relation ( on a set X is called the equivalence, if the following properties holds (see Figure 4.5): 
i)  
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 (reflexivity),
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(symmetry),
iii)  from 
[image: image26.wmf]xy

j

 and 
[image: image27.wmf]yz

j

 it follows
[image: image28.wmf] ,,

xzxyzX

j

"Î

(transitivity).
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Figure 4.5. The equivalence.

Particularly, the equality on the arbitrary set, the parallelism on the set of lines, and the similarity of triangles are the equivalences; and the divisibility on the set of natural numbers, seniority on the set of people, and the perpendicularity on the set of lines are not the equivalences.
Example 4.5. Consider the set of natural numbers 
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. Determine the relation ( there such that the condition x(y is true if the number | х – у | is divisible by three. It is obviously that this relation is equivalence. Now the set 
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 can be divided by the following subsets
N1 = {1, 4, 7, … },  N2 = {2, 5, 8, … },  N3 = {3, 6, 9, … }.
Note that two arbitrary elements from the same of these subsets are equivalent, and two arbitrary elements from the different subsets are not equivalent. Besides, each natural number belongs to the unique subset Ni. ( 
Definition 4.4. Let ( be an equivalence on a set X, and x is an element of X. The set [x] of all elements of the set X that are equivalent to x is called the equivalence class with representative x. 
Particularly, the set N1 of Example 4.5 is the equivalence class on the set of natural numbers with representative 1, i.e. 
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 and N3 is the equivalence class there with representative 9. Of course, if the element x and y are equivalent, then its equivalence classes are equal. Therefore, the equivalence class can be determined by its arbitrary element. The equivalence classes for all sets and equivalences satisfies the following properties:

i)  two arbitrary elements from the same equivalence class are equivalent,
ii) two arbitrary elements from the different subsets are not equivalent,
iii)  each element from the given set belongs to the unique equivalence class.
Definition 4.5. The set of all equivalence classes of the set X with respect to the relation ( is called the factor-set and denote by Х/(.

The factor-set of the set of natural number with respect to the relation ( of Example 4.5 is (see Figure 4.6)
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Figure 4.6. Factorization of the set of natural numbers.

Return to the definition of the real numbers. Let F be the set of all fundamental sequences of rational numbers. We determine a relation ( here. Suppose the property {xk}({уk} between the sequences {xk} and {уk} of F is true, if for any rational number   there exists a number k() such that | xk – уk | <   for all k > k(). 
Consider the properties of this relation (see Figure 4.7). At first, we have the relation {xk}({xk} for all sequence {xk} because | xk – xk | = 0 that is the reflexivity. Besides, if we have the relation {xk}({уk}, then {уk}({хk} because the inequality | уk – хk | < is the obvious corollary of the inequality  | xk – уk | < Therefore, we have the symmetry. Finally, if we have three fundamental sequences {xk}, {уk}, and {zk} with relations {xk}({уk}  and {уk}({zk}, then for any  there exists a number k() such that
| xk – уk | < 2,  | уk – zk | < 2.

Therefore,
| xk – zk | < | xk – уk | + | уk – zk | <  2  2
Thus, we get {xk}({zk} that is the transitivity XE "отношение:транзитивное" . Thus, the relation ( on the set F is the equivalence.
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Figure 4.7. Equivalence ( of the fundamental sequences.
Now we can consider the definition of the real numbers by Cantor.

Definition 4.6. The factor-set F/( is called the set of real numbers 
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Particularly, the fundamental sequence of rational numbers

x1 = 3,  x2 = 3.1,  x3 = 3.14,  x4 = 3.141,  x5 = 3.1415,…      

is a representative of the concrete real number that is denoted by (. Other its representative is the fundamental sequence
y1 = 4,  y2 = 3.2,  y3 = 3.15,  y4 = 3.142,  y5 = 3.1416,…    

that is equivalent to the first sequence. Therefore, we get
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We shell denote the equivalence class with representative {xk} by [xk] instead 
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One seems Definition 4.6 characterizes not quite those objects, which we intuitively associate with real numbers. Indeed, we understand the real numbers as objects similar to rational numbers, and not classes of any sequences. In particular, if the length of both cathetus in a right triangle is equal to one (rational number 1), then the length of the hypotenuse turns out to be equal to (2, which corresponds to the irrational number. If there is a circle of the unit diameter, then the circumference is equal to (. In these examples, both rational and irrational numbers are the characteristics of single-type objects (lines or curves segments) that are their lengths (see Figure 4.8). Psychologically we are accustomed to perceive the real numbers as ordinary numbers, similar to rational numbers, but having "weaker" properties in general case. Therefore, we need to make sure that Definition 4.6 describes a set of real numbers in reality.
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Figure 4.8. The lengths of the cathetus and the diameter are rational, 
and lengths of the hypotenuse and the circumference are irrational.

Conclusions

1. The justification of the determination of mathematical models is based on the passage to the limit. 

2. The definition of the limit is not constructive because it uses a priori knowledge of the limit. 
3. The proof of the convergence can be based on the Cauchy criterion that uses the fundamentality of the sequences and does not require a priori knowledge of the limit.
4. The Cauchy criterion is not always applicable.

5. The Cauchy criterion is applicable for the complete spaces only.

6. The majority of the spaces is non-complete.

7. The classic example of the non-complete spaces is the set of rational numbers.

8. The divergent fundamental sequences of rational numbers determines the irrational numbers by Cantor.

9. The Cantor’s real numbers are the equivalent classes of the fundamental sequences of rational numbers.

We do not yet have the confidence that a considered set of equivalence classes of fundamental sequences of rational numbers characterizes the real numbers in their natural sense. If this could be proved, we could try to extend this method of determining real numbers to arbitrary metric spaces with divergent fundamental sequences. Perhaps, it is precisely this method that we will be able to solve the problem of correctly determining mathematical models of physical processes.
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